Final Exam, MTH 211, Fall 2009

Ayman Badawi

QUESTION 1. 39 points, each $=\mathbf{3}$ points Write down T OR F (no justification is needed)
(i) Each interior angle of a regular 10-gon is 36 degree.
(ii) Using unmarked ruler and a compass only we can construct a regular 28-gon.
(iii) Let D is a circle with O as the center, H be another circle inside D and has the same center as D , and let F be the inversion of H with respect to D . Then D lies inside F .
(iv) If we constructed an angle α by unmarked ruler and a compass and $n=\frac{360}{\alpha}$ is a whole number, then we can construct a regular n-gon.
(v) $a^{\prime} b^{\prime} \quad$ is the inversion of the line segment ab with respect to C
(vi) If the hyper-line L_{1} is parallel to the hyper-line L_{2} and the hyper-line L_{1} is parallel to the hyper-line L_{3}, then L_{2} is parallel to L_{3}.
(vii) It is possible to construct a hyper-square so that the sum of all 4 interior angles equals to 360 .
(viii) if C is the golden cut of the line segment $a b$ such that $a b / a c=$ the golden ratio, then $\frac{a b+c b}{a b}$ is still the golden ratio.
(ix) consider the square abcd . Let us replace the side ab by an arc amb (see figure)

If we reflect amb about the line EF and we removed the side cd , then we get a new object that can be used to tile a plane.
(x) It is possible to construct a regular 50-gon using unmartked ruler and a compass
(xi) It is possible to construct a regular 42-gon using unmartked ruler and a compass
(xii) In Fibonacci sequence F_{n}, we know that $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$. Also we know that when n is so huge then the ratio of $\frac{F_{n+1}}{F_{n}}=$ golden ratio. Now let us assume that $F_{1}=1 / 2, F_{2}=1 / 2$, and $F_{n}=F_{n-1}+F_{n-2}$ (so $F_{3}=F_{2}+F_{1} \stackrel{n}{=}, F_{4}=F_{3}+F_{2}=1.5, F_{4}=F_{3}+F_{2}=2$, and so on ...). Then when n becomes huge the ratio of $\frac{F_{n+1}}{f_{n}}=\frac{1}{2}$ of the golden ratio.
(xiii) This is MTH 221, you are in Chemistry 109, and your instructor name is Aman Badawi

QUESTION 2. 15 points Let C be a circle with radius 3, center O , and A be a point inside C such that $d(O, A)=1 \mathrm{~cm}$ (the Euclidean distance from O to A is 1). Let D be a circle passes through A and orthogonal to C (the two circles make 90 degrees, I mean D is perpendicular to C). Show that the radius of D must be greater or equal to 4 . I mean use simple math to verify that. After you are done with the verifications, state the steps that you will use to construct such circle D with radius 5 .

QUESTION 3. 16 points a.) USE UNMARKED RULER and a COMPASS ONLY. Given two lines intersect at a point O and A is a point that does not lie on any of the two lines, construct a line passing through A and intersecting the two lines at the points B and C in such a way that $A B=A C$. State the steps of construction. No math justification is needed.
b) Construct a 2-points perspective image of a rectangle that is not a square. State the steps of construction without math justification.

QUESTION 4. 15 points Let H be the horizon circle with radius 4 and center O . Let A, B be two pints inside H such that they do not lie on any diameter of H . Given $\mathrm{d}(\mathrm{O}, \mathrm{A})=\mathrm{d}(\mathrm{O}, \mathrm{B})=2 \mathrm{~cm}$. Construct a hyper line, SAY L, that passes through A, and B. a) Show the steps of construction.
b)Now choose two points, F, D inside H such that F, D lie on L too. Explain in at most two lines why do C_{A}, C_{B}, C_{D}, C_{F} intersect exactly in one point.
c) Use a marked ruler to find $d_{h}(A, B)$.

QUESTION 5. 15 points

a triangle abc is called semi-acute triangle if $\mathrm{ab}=\mathrm{ac}$ and $a b / b c=\frac{1}{2}$ of the golden ratio. Now you have a thin wire that has length 12 cm . Divide the wire into 6 pieces to make two semi-acute triangles. Show the steps of construction. Then calculate the angles of such triangle.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

